
Investigation of the Over Approximation in System Call Set Extraction

Brian C. Tracy
Brown University CS2951U — 2021

Abstract
System calls (syscalls) give user space programs the power
to do privileged operations like accessing the network, modi-
fying the filesystem, and creating new processes. Likewise,
syscalls also give user space programs the power to do danger-
ous things (flood the network, delete the filesystem, kill other
processes). When compromised, everything that a user space
process can do with syscalls becomes a tool for the attacker to
exploit. To defend against the creation of powerful “confused
deputies” when a user space process is compromised, some
systems make only the smallest required subset of the entire
syscall interface available to processes, in alignment with
the principle of least privilege. sysfilter is such a defense
mechanism that works by statically analyzing programs to
determine which syscalls they need, and which they do not.
Determining this subset of syscalls is non trivial, and because
false positives (the blocking of a syscall that is legitimate) are
unacceptable, the set of allowed syscalls must be over approxi-
mated. This paper investigates the extent to which sysfilter
over approximates the allowable syscall set by comparing the
static analysis predictions from several test programs to their
actual syscall usage, as determined by dynamic analysis.

1 Introduction

Historically, the entire system call interface has been available
to every user space process. This allows any process, regard-
less of how narrow its goals may be or what it requires from
the operating system, to perform a large variety of dangerous
actions. As an example, there is generally nothing stopping a
compromised cat program from opening up a network socket
or deleting a file, despite these being things that would never
legitimately be needed by such a program.

This rather glaring violation of the principle of least priv-
ilege has been known about (probably, like all things, since
the ’70s) for a long time and has been addressed in the Linux
kernel for at least 15 years [3].

Beginning in 2005, programmers could use the seccomp fa-
cility in the kernel to prevent their processes from performing

unnecessary system calls through manual blacklisting. This is
a great step forward for modern programs, but leaves legacy
binaries in their original state of relative insecurity.

In an attempt to automate the process of determining which
syscalls a program really needs, and which it can do without,
sysfilter was created in 2020 [2]. This paper investigates
the properties of sysfilter with respect to how good of an
approximation it is able to make about the required set of
system calls of a given binary.

2 How sysfilter Works

To harden a program with sysfilter, two steps are required.
The first phase of the hardening, known as the “extraction”
phase, determines which system calls a given program needs.
The second phase, known as “enforcement”, actually modifies
the program itself to prevent it from making any sycalls other
than those identified in the previous phase.

The extraction phase begins by identifying all potential sys-
tem call sites by disassembling the target binary and looking
for syscall instructions. From here, the value of the %rax
register can be tracked to determine which exact syscall is
being made at any given call site (in the Linux x64 ABI, %rax
indicates the syscall number).

Once the set of all potential system calls sites are known,
sysfilter gets to work on pruning it. To understand why
the pruning is necessary, consider the fact that most programs
dynamically link with the C standard library, which contains
bindings for most syscalls. If the entire set was not pruned,
sysfilter would just report that all syscalls (whose call sites
are brought in by the C standard library) are used in every
program.

To prune the set of all potential syscalls, something akin
to dead code elimination is performed and any call sites that
are known to be unreachable are removed. This process is
not completely solvable and sysfilter will not be able to
always remove all unused system calls.

Due to this fact, the final set of syscalls that the extraction
phase returns will always be at least as large as the theoretical

1

set of syscalls that the program actually makes. The extent to
which sysfilter over approximates this set is the focus of
the rest of the investigation.

3 Tools

To assess how much larger the statically determined set of
syscalls is than the set of calls the program will make during
runtime, the program needs to be monitored while it executes.
The strace utility performs this monitoring and will compile
a list of all system calls (and other statistics) that a given
program makes.

In addition, a simple python script is used to map between
syscall names and numbers (as defined by Linux header files)
for ease of understanding.

4 Code Coverage and Lower Bounds

When performing the dynamic analysis step (as instrumented
by strace), it is important to understand how much of the
program you are inspecting is actually being executing. To
accomplish this, a code coverage tool can be employed.

For example, if dynamic analysis says that 10 syscalls were
performed during the lifetime of a process, but the code cov-
erage metrics say that only 50% of all code paths were taken,
then we can not be confident in our figure. The un-executed
paths could be responsible for making syscalls that we do not
know about. Due to unknown potential of these code paths,
our strace analysis will always be a lower bound on the
number of syscalls a program could theoretically make, given
any input.

To increase the confidence that the dynamically determined
lower bound on the number of syscalls a program makes is
actually close to the theoretical bound, we need to ensure that
more of the program’s code gets a chance to be instrumented.
Code coverage is the metric that will lead to confidence in the
generated lower bound, and thus the analysis works best on
programs with high code coverage.

5 Degenerate Edge Cases

To better understand the precision of the tools being used in
the investigation, several small test cases were created. Specif-
ically, I wanted to know what the minimum set of syscalls
both sysfilter and strace could extract/detect.

An obvious, yet illustrative, starting point is the standard
C “Hello World!” program. strace indicates that 13 syscalls
are made, most of which seem out of place for such a simple
program. As suspected, write, close, and exit are present,
but the rest are slightly less obvious.

These seemingly “extra” syscalls come from the program
setup phase as performed by the C runtime. Before main gets
called, and after it exits, lots of setup/teardown code needs to

executed, and along with it, several system calls need to be
made.

One unfortunate artifact of this process is that every pro-
gram ends up calling mprotect, a rather dangerous system
call that changes permissions of memory pages, and a com-
mon target for attack.

To get the absolute minimum set possibly detectable by
strace, I created the smallest ELF I knew of and bypassed
libc entirely.

GLOBAL _ s t a r t
SECTION . t e x t
_ s t a r t :

mov rax , 60 ; e x i t ()
mov r d i , 98
s y s c a l l

For this tiny executable (which only directly calls exit),
strace picks up calls to mmap, mprotect, brk, access,
execve, arch_prctl, and exit.

This set will serve as the baseline for all strace mea-
surements and will contribute to the dynamically determined
lower bound of syscall usage for every program, even if they
don’t “really” use these syscalls (i.e: the programmer never
intentionally calls them).

To determine the limits of the sysfilter tool, with respect
to the smallest detectable set, the hello world program is again
useful. sysfilter reports printing “Hello World!” involves
47 system calls, including some interesting choices such as
socket, connect, and kill.

6 Pre Investigation Notes

Early results from the above tests seemed to indicate that for
trivial programs, the bulk of sysfilter’s over approximation
comes from non optimal dead code elimination / call graph
pruning of shared libraries. The size of libc compared to these
trivial programs means that we are not really testing how well
sysfilter works on our code, but rather we have reduced
the problem to how well sysfilter works on a virtually
unused libc shared object.

For this reason, I introduce the notion of “pathological”
and “standard” test cases. The former are programs whose
authored source code is just a drop in the ocean of the shared
libraries it imports, while the latter are more realistic programs
that actually do use a wide array of system calls.

7 Investigation Process

Armed with strace, I set out to create and discover inter-
esting test cases to probe the extent of sysfilter’s over
approximation. The majority of the work was dedicated to the
“standard” test cases and the less realistic “pathological” ones
are included as bonuses. The overall process was as follows.

2

1. Identify or create an interesting test program

2. Isolate this test program and build it as a standalone
binary for consumption by sysfilter

3. Execute as many code paths as possible in the test pro-
gram, while it is being observed by strace

4. Determine the code coverage of the previous step to
determine how complete of a picture the strace output
gives

5. Sanity check the difference between the static and dy-
namic analyses and attempt to explain the result

8 Hello World++

Inspired by the surprising results of the hello world example,
I decided to continue this line of reasoning to its most absurd
extent. If shared libraries are causing them majority of unused
syscalls, then I would create a program that does nothing, but
requires as many shared libraries as possible to do it.

Hello World++ loads in 4 common shared libraries, calls
1 function from each of them, and then exits. One function
from each is called to prevent the wholesale elimination of
the respective shared library by the optimizer.

$ gcc h e l l o−world ++. c \
− l p t h r e a d \
− l d l −rdynamic \
− l r e a d l i n e \
− l n c u r s e s

As a bonus, two extra shared libraries are brought in as
dependencies of the intended 4.

$ l d d a . o u t
l i n u x−vdso . so . 1
l i b p t h r e a d . so . 0
l i b d l . so . 2
l i b r e a d l i n e . so . 7
l i b n c u r s e s . so . 5
l i b t i n f o . so . 5
l i b c . so . 6
/ l i b 6 4 / ld−l i n u x−x86−64. so . 2

strace indicates that this bulkier hello world issues 22
syscalls, while sysfilter predicts 97.

Notice that no code coverage metrics were gathered for the
hello world programs. This is because a visual inspection is
enough to verify that the source is branchless and that there
are no hidden syscalls that could be invoked.

9 Real Programs

The pathological examples illustrated that sysfilter has a
tough time handling largely unused libraries and that they are

a major source of over approximation. However, my intuition
was that the static analysis incurs a fixed “startup cost” for
small programs that will be “absorbed” by larger programs
that actually use the libraries they import. To test this hypoth-
esis, I needed to perform the same analysis on a non trivial,
preferably well known, program.

SQLite is an ideal benchmark because it can be amalga-
mated into a single C file, it has a built in test suite, and the
developers have a fanatical passion for high test coverage [1].
The amalgamated sqlite3.c file is 230,000 lines long and
contains the entire SQLite API. There are several ways to
prepare this file for sysfilter.

The simplest option is to stick a dummy
int main(){return 12;} method at the end of the
file and hand it over to gcc. The resulting binary (which
is linked with -ldl -lpthread -lm) now contains the
entire SQLite3 API and a main function that are completely
separated. This is the ideal situation for sysfilter to prune
away all of the unused syscalls made by SQLite because not
a single SQLite function is reachable from the main method.
In fact, it appears that this is exactly what sysfilter is able
to do!
sysfilter reports that the SQLite amalgam with a dummy

main will use 63 syscalls, the exact same number (and list of
calls) that sysfilter reports a blank program linked with
-ldl -lpthread -lm will make. This is an amazing feat
from sysfilter!

The next amalgamation is to not just have a dummy main
method, but to provide a main that uses every core SQLite
API. When this is given to sysfilter, a total of 73 syscalls
are detected. This will serve as the smallest upper bound on
the theoretical syscall set for SQLite.

10 Results

Running the SQLite tests while being instrumented by
strace takes around 10 minutes for the smallest of the
suites. During this time, 429471 tests are run and the original
sqlite3.c file is 96.7% covered (as reported by gcov). A
total of 55 different syscalls are reported. To interpret these
results, we need to do some set arithmetic to determine which
system calls are made by the test runner and which come from
SQLite.

Assuming the soundness of sysfilt (it will never fail to
report a system call that ends up actually being called), we
can compute which system calls were issued solely from the
test harness, and not the SQLite code.

Let the two sets Trace = {strace output} and Filt =
{sysfilt output} be the sets of syscalls detected by strace
and sysfilt respectively. To determine which were only
present in the support code, let Support = Trace−Filt, where
|Support|= 17 and is comprised of syscalls such as utime,
clock_nanosleep, symlink, and other test related function-
ality. We know that these system calls only occurred in the

3

Table 1: Approximate Over Approximations by sysfilter

Program Name sysfilter strace (upper)
Hello World 47 13

Hello World++ 97 23
SQLite (dummy main) 63 38

SQLite (rich main) 77 38

support code because any call not in the Filt set is definitely
not being called by the SQLite code.

Knowing that 55 syscalls were made, and 17 of them were
exclusively issued by the support code, we have an absolute
upper bound on the number of syscalls made by SQLite of
55− 17 = 38. Contrasting this with the numbers generated
by sysfilter gives us our over approximation.

11 Conclusion

sysfilter hardens a program by extracting, and then enforc-
ing the set of system calls that the program legitimately needs.
To ensure that needed syscalls are never excluded from this
list, sysfilter must over approximate the necessary set. A
large portion of this over approximation comes from the fact
that programs load in huge amounts of external code from
shared libraries, and guaranteeing that certain code paths are
not taken is a non trivial task.

To quantify the actual extent of the over approximation in
the results of sysfilter’s extraction phase, dynamic analysis
can be performed to determine which syscalls are being made
at runtime. This analysis shows that for small programs, the
over approximation is quite large due to the disproportional
size differences between application and library code. For
larger programs that more fully utilize their shared libraries,
the over approximation tends to be smaller.

References

[1] SQLite Open Source authors. SQLite Testing documen-
tation. https://sqlite.org/testing.html.

[2] Nicholas DeMarinis, Kent Williams-King, Di Jin, Ro-
drigo Fonseca, and Vasileios P. Kemerlis. sysfilter: Au-
tomated System Call Filtering for Commodity Software.
In 23rd International Symposium on Research in Attacks,
Intrusions and Defenses (RAID 2020), pages 459–474,
San Sebastian, October 2020. USENIX Association.

[3] Jake Edge. A library for seccomp filters. https://lwn.
net/Articles/494252/.

4

https://sqlite.org/testing.html
https://lwn.net/Articles/494252/
https://lwn.net/Articles/494252/

	Introduction
	How sysfilter Works
	Tools
	Code Coverage and Lower Bounds
	Degenerate Edge Cases
	Pre Investigation Notes
	Investigation Process
	Hello World++
	Real Programs
	Results
	Conclusion

